What is dense correspondence

Handbook of Geodesy pp 1-32 | Cite as

  • Heiko Hirschmüller
Living reference work entry

Later version available View entry history

First Online:
Part of the Springer Reference Science book series (SRN)

Summary

The goal of close image mapping is to find, for every pixel in an image, the pixel in another image that corresponds to the same point in the scene. Although this problem is generally not entirely resolvable, a large number of methods have been developed over time that produce good results. This chapter examines comparative measures and local, global and semi-global methods based on them and discusses their advantages and disadvantages. Furthermore, information on post-processing and reconstruction from images is given and possible applications are shown.

keywords

Dense stereo matching Global cost function Comparative measures Radiometric robustness Digital surface model Navigation Robotics

This article is part of the Handbook of Geodesy, volume "Engineering Geodesy", edited by Willfried Schwarz, Weimar.

This is a preview of subscription content, log in to check access.

literature

  1. Banz, C., Hesselbarth, S., Flatt, H., Blume, H., Pirsch, P .: Real-time stereo vision system using semi-global matching disparity estimation: architecture and FPGA implementation. In: IEEE Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (2010) Google Scholar
  2. Banz, C., Blume, H., Pirsch, P .: Real-time semi-global matching disparity estimation on the GPU. In: Workshop on GPU in Computer Vision Applications at the International Conference on Computer Vision, pp. 514-521 (2011) Google Scholar
  3. Black, M.J., Rangarajan, A .: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int. J. Comput. Vis. 19(1), 57-91 (1996) CrossRefGoogle Scholar
  4. Bleyer, M., Rhemann, C., Rother, C .: PatchMatch stereo - stereo matching with slanted support windows. In: British Machine Vision Conference (2011) CrossRefGoogle Scholar
  5. Bobick, A.F., Intille, S.S .: Large occlusion stereo. Int. J. Comput. Vis. 33(3), 181-200 (1999) CrossRefGoogle Scholar
  6. Boykov, Y., Kolmogorov, V .: An experimental comparison of min-cut / max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Do. Intelligent 26(9), 1124-1137 (2004) CrossRefGoogle Scholar
  7. Boykov, Y., Veksler O., Zabih, R .: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Do. Intelligent 23(11), 1222-1239 (2001) CrossRefGoogle Scholar
  8. Drory, A., Haubold, C., Avidan, S., Hamprecht, F.A .: Semi-global matching: a principle derivation in terms of message passing. In: German Conference on Pattern Recognition, Münster (2014) Google Scholar
  9. Egnal, C .: Mutual information as a stereo correspondence, Technical Report of the University of Pennsylvania, Computer and Information Science, MS-CIS-00-20, Philadelphia (2000) Google Scholar
  10. Ernst, I., Hirschmüller, H .: Mutual information based semi-global stereo matching on the GPU. In: International Symposium on Visual Computing, LNCS 5358, Part 1, Las Vegas, pp. 228-239 (2008) Google Scholar
  11. Faugeras, O., Hotz, B., Mathieu, H., Vieville, T., Zhang, Z., Fua, P., Thron, E., Moll, L., Berry, G., Vuillemin, J., Bertin, P., Proy, C .: Real time correlation-based stereo: algorithm, implementations and application, INRIA technical report, number RR-2013, France (1993) Google Scholar
  12. Förstner, W .: Quality assessment of object location and point transfer using digital image correlation techniques. In: International Archives of Photogrammetry and Remote Sensing, Vol. XXV, A3a, Commission III, Rio de Janeiro (1984) Google Scholar
  13. Fua, P .: Combining stereo and monocular information to compute dense depth maps that preserve depth discontinuities. In: International Joint Conference on Artificial Intelligence, Sydney (1991) Google Scholar
  14. Fusiello, A., Roberto, V., Trucco, E .: Efficient stereo with multiple windowing. In: IEEE Conference on Computer Vision and Pattern Recognition, Puerto Rico, pp. 858-863 (1997) Google Scholar
  15. Gallup, D., Frahm, J.-M., Mordohai, P., Yang, Q., Pollefeys, M .: Real-time plane-sweeping stereo with multiple sweeping directions. In: IEEE Computer Vision and Pattern Recognition, Minneapolis (2007) CrossRefGoogle Scholar
  16. Gehrig, S., Eberli, F., Meyer, T .: A real-time low-power stereo vision engine using semi-global matching. In: International Conference on Computer Vision Systems, LNCS 5815, Liege, pp. 134-143 (2009) Google Scholar
  17. Greig, D.M., Porteous, B.T., Seheult, A.H .: Exact maximum a posteriori estimation for binary images. J. R. Stat. Soc. Ser. B (Methodological) 51(2): 271-279 (1989) Google Scholar
  18. Grün, A .: Adaptive least squares correlation - a powerful image matching technique. S. Afr. J. Photogram. Remote Sens. Cartograph. 14(3): 175-187 (1985) Google Scholar
  19. Hirschmüller, H .: Stereo processing by semi-global matching and mutual information. IEEE Trans. Pattern Anal. Do. Intelligent 30(2), 328-341 (2008) CrossRefGoogle Scholar
  20. Hirschmüller, H., Gehrig, S .: Stereo matching in the presence of sub-pixel calibration errors. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami (2009) CrossRefGoogle Scholar
  21. Hirschmüller, H., Scharstein, D .: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Anal. Do. Intelligent 31(9), 1582-1599 (2009) CrossRefGoogle Scholar
  22. Hirschmüller, H., Innocent, P.R., Garibaldi, J.M .: Real-time correlation-based stereo vision with reduced border errors. Int. J. Comput. Vis. 47(1/2/3), 229-246 (2002) Google Scholar
  23. Kanade, T., Okutomi, M .: A stereo matching algorithm with an adaptive window: theory and experiment. IEEE Trans. Pattern Anal. Do. Intelligent 16(9): 920-932 (1994) CrossRef Google Scholar
  24. Kim, J., Kolmogorov, V., Zabih, R .: Visual correspondence using energy minimization and mutual information. In: International Conference on Computer Vision (2003) Google Scholar
  25. Kolmogorov, V., Zabih, R .: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Do. Intelligent 26(2), 147-159 (2004) CrossRefGoogle Scholar
  26. Konolige, K .: Small vision system: hardware and implementation. In: International Symposium on Robotics Research, Hayama, pp. 203-212 (1997) Google Scholar
  27. Kuhn, A., Hirschmüller, H., Mayer, H .: Multi-resolution range data fusion for multi-view stereo reconstruction. In: German Conference on Pattern Recognition, Saarbrücken (2013) CrossRefGoogle Scholar
  28. Kuhn, A., Mayer, H., Hirschmüller, H., Scharstein, D .: A TV prior for high-quality local multi-view stereo reconstruction. In: International Conference on 3D Vision, Tokyo (2014) Google Scholar
  29. Rabe, C., Müller, T., Wedel, A., Franke, U .: Dense, robust and accurate 3D motion field estimation from stereo image sequences in real-time. In: European Conference on Computer Vision, Heraklion (2010) Google Scholar
  30. Scharstein, D .: Source code of various stereo methods, status (2014). https://vision.middlebury.edu/stereo/code/
  31. Scharstein, D., Szeliski, R .: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1/2/3), 7-42 (2002) Google Scholar
  32. Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nesic, N., Wang, X., Westling, P .: High-resolution stereo datasets with subpixel-accurate ground truth. In: German Conference on Pattern Recognition, Münster (2014) CrossRefGoogle Scholar
  33. Schmid K., Lutz, P., Tomic, T., Mair, E., Hirschmüller, H .: Autonomous vision-based micro air vehicle for indoor and outdoor navigation. J. Field Robot. Spec. Issue Low Altitude Flight UAVs 31(4), 537-570 (2014) Google Scholar
  34. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C .: A comparative study of energy minimization methods for Markov random fields. In: European Conference on Computer Vision, Vol. 2, Graz, pp. 16-29 (2006) Google Scholar
  35. Tappen, M.F., Freeman, W.T .: Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters. In: IEEE International Conference on Computer Vision, pp. 900-907 (2003) Google Scholar
  36. Trucco, E., Verri, A .: Introductory Techniques for 3-D Computer Vision. Prentice-Hall, Upper Saddle River (1998) Google Scholar
  37. Viola, P., Wells, W.M .: Alignment by maximization of mutual information. Int. J. Comput. Vis. 24(2), 137-154 (1997) CrossRefGoogle Scholar
  38. Yoon, K.-J., Kweon, I.-S .: Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern Match. Do. Intelligent 28(4), 650-656 (2006) CrossRefGoogle Scholar
  39. Zabih, R., Woodfill, J .: Non-parametric local transforms for computing visual correspondence. In: Proceedings of the European Conference of Computer Vision, Stockholm, pp. 151-158 (1994) Google Scholar

Authors and Affiliations

  1. 1. German Aerospace Center (DLR) Institute for Robotics and MechatronicsWeßlingGermany